Fast Recursive Data-driven Multi-resolution Feature Extraction For Physiological Signal Classification

نویسندگان

  • Joachim Hornegger
  • Florian Hönig
  • Anton Batliner
  • Elmar Nöth
چکیده

This study presents a new approach to feature extraction for real-time classification of physiological signals. By using multiple resolutions for the analysis of the signal, the stability of large analysis windows is combined with the capability of small windows to reflect quick changes. A large number of generic features is extracted from each signal for each resolution. These are calculated recursively for each sample which makes them very efficient in terms of computation time; a version with low memory requirements is also provided. A labelled dataset is utilised to convert the generic features into taskand signal-specific features by means of a data-driven transform. The performance of the approach is evaluated on a database containing different stress levels collected in a simulated driving context. A recognition date of 89.8 % is achieved for online, user-independent classification of stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

روشی جدید در بازشناسایی خودکار اهداف متحرک زمینی با استفاده از رادارهای مراقبت زمینی پالس داپلر

A new automatic target recognition algorithm to recognize and distinguish three classes of targets: personnel, wheeled vehicles and animals, is proposed using a low-resolution ground surveillance pulse Doppler radar. The Chirplet transformation, a time frequency signal processing technique, is implemented in this paper. The parameterized RADAR signal is then analyzed by the Zernike Moments (ZM)...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition

Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007